
Softw Syst Model (2017) 16:1179–1199
DOI 10.1007/s10270-015-0512-y

REGULAR PAPER

Variability extraction and modeling for product variants

Lukas Linsbauer1 · Roberto Erick Lopez-Herrejon1 · Alexander Egyed1

Received: 10 October 2014 / Revised: 3 December 2015 / Accepted: 9 December 2015 / Published online: 29 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Fast-changing hardware and software technolo-
gies in addition to larger andmore specialized customer bases
demand software tailored to meet very diverse requirements.
Software development approaches that aim at capturing this
diversity on a single consolidated platform often require
large upfront investments, e.g., time or budget. Alternatively,
companies resort to developing one variant of a software
product at a time by reusing as much as possible from
already-existing product variants. However, identifying and
extracting the parts to reuse is an error-prone and inefficient
task compounded by the typically large number of product
variants. Hence, more disciplined and systematic approaches
are needed to cope with the complexity of developing and
maintaining sets of product variants. Such approaches require
detailed information about the product variants, the features
they provide and their relations. In this paper, we present an
approach to extract such variability information fromproduct
variants. It identifies traces from features and feature inter-
actions to their implementation artifacts, and computes their
dependencies. This work can be useful in many scenarios
ranging from ad hoc development approaches such as clone-
and-own to systematic reuse approaches such as software
product lines. We applied our variability extraction approach
to six case studies and provide a detailed evaluation. The

Communicated by Prof. Andrzej Wasowski and Thorsten Weyer.

B Lukas Linsbauer
lukas.linsbauer@jku.at

Roberto Erick Lopez-Herrejon
roberto.lopez@jku.at

Alexander Egyed
alexander.egyed@jku.at

1 Institute for Software Systems Engineering, Johannes Kepler
University, Linz, Austria

results show that the extracted variability information is con-
sistent with the variability in our six case study systems given
by their variability models and available product variants.

Keywords Feature · Trace · Product variant · Variability ·
Dependency

1 Introduction

Several technological and economical trends have made it
necessary for software products to be readily and efficiently
available in different variants that cater to different software
platforms, hardware support or customer functionality.

Variability is the capacity of software artifacts to vary [37].
Its effective management requires variability information
such as the set of possible product variants, the features they
provide, how they are related, and how they are implemented.
For the latter, we compute traces from features and feature
interactions to their implementation artifacts and vice versa.

A Trace is a link between a source and a target artifact
[10]. Traceability is defined as the potential for traces to be
established and used. Variability management is paramount
for coping with scenarios where multiple product variants
must be developed and maintained such as:

Supporting and enhancing clone-and-own reuse. Clone-
and-own is a manual ad hoc software reuse approach where
new product variants are created by reusing parts from
already-existing variants [13]. The parts to be reused must
first be located in the existing variants, then extracted,
merged, and completed to obtain the new working variant.
This process is repeated for each new variant required. This
approach is simple, intuitive, and requires only very little
upfront investment. However, it inevitably leads to mainte-
nance issues and hinders efficient reuse. For example, bug

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0512-y&domain=pdf

1180 L. Linsbauer et al.

fixes must be applied to every product variant individually
because they do not share a common platform, and identi-
fying reusable implementation is difficult within a large set
of product variants. Variability information in this context
helps to locate reusable features and their implementing arti-
facts. It even makes it possible to partially automate reuse
and provide more robust support for clone-and-own [15].

Reverse engineering software product lines (SPLs). SPLs
are families are families of related systemswhosemembers—
variants of a product—are distinguished by the set of features
they provide [7,31]. Ideally these product variants are not
maintained individually like in the case of clone-and-own
but rather part of a common integrated platform that manages
common assets. In cases where the problem domains and the
product variants are mature and stable, software companies
can consider the development of such a fully integrated SPL
platform to reap the documented benefits that SPLs enable
such as improved quality, reduced long-term costs, and easier
maintenance [31]. In this scenario, variability information is
not only highly useful but even necessary for reverse engi-
neering the artifacts needed by SPL development approaches
[15,17,39].

Extending an SPL. In cases where an SPL already exists,
the need of providing new features to meet new customer
requirementsmay still arise. In such cases, product lines have
to be extended to provide such new features, a process that
requires knowledge about already-existing features and how
they interrelate. Unfortunately, while every SPL has inher-
ent variability, the information about it is often not explicitly
available as many SPLs are the result of ad hoc develop-
ment.Variability information can be spread out across several
places and implemented using various different techniques
like preprocessors, configuration files, runtime constructs,
and hidden in custom product line configuration tools [24].

In this paper, we present an approach for extracting vari-
ability information from sets of related product variants. We
work under two basic assumptions:

– The set of features provided by each product variant
is known (although it is not known where the features
are actually implemented in the artifacts). Note that this
assumption does not require a feature model or any other
kind of variability model to be available.

– All implementation artifacts for each product variant are
available.

We argue that these two requirements are reasonable assump-
tions for product variants of commercial relevance to compa-
nies regardless of how they are maintained or implemented.
Obviously the implementations for the product variants need
to be available, otherwise, they could not be maintained and
sold. The concept of featuresmay sometimes not explicitly be
present, but in such cases we found that features can often be

retrieved from various sources, e.g., from other departments
within an organization (e.g., the sales department must have
a concept of features for determining what product variants
they can sell), from configuration options in the software
(the software of course needs to be able to reflect the feature
choices made during the sales process) or by interviewing
developers [16].

Our work extracts traces from features as well as feature
interactions to their implementation artifacts and computes
trace dependencies. This variability information is modeled
and represented in a way that can be beneficial for develop-
ment scenarios such as those described above. Our previous
work also computed traces [25], but could not deal with
artifacts that had a non-unique trace, ordered artifacts (e.g.,
statements in a programming language) and instead of orga-
nizing artifacts in a tree structure it employed a simple list.
Our follow-up work improved on these aspects [15] but still
did not consider dependencies between artifacts contained
in different traces and their consistency with domain knowl-
edge available for example in the form of variability models.
The evaluation was solely based on the implementation of
product variants.We therefore extend our previous work (see
Linsbauer et al. [15,25]) by:

– Extending the extraction process to also extract depen-
dencies between traces and depicting them as depen-
dency graphs.

– Evaluating extracted traces and dependency graphs with
respect to the feature model (as a form of variability
model) of case studies when available.

– Presenting a more detailed evaluation and analysis of the
extraction process, based on specialized metrics such as
number of extracted traces or runtime per product variant
used as input. This is to provide an empirical gist of how
variability is implemented in practice and how and why
this approach is applicable and useful and to reveal where
potential optimizations can be made.

Replication material can be found on the website of the
Institute for Software Systems Engineering at the Johannes
Kepler University Linz: http://www.jku.at/isse/content/e
139529/e126342/e219248/e289826.

The remainder of this paper is structured as follows: Sect. 2
introduces a running example and basic background. Sec-
tion 3 discusses a motivating scenario and highlights the
challenges that need to be addressed. Section 4 describes
data structures and operations on them which will be used in
Sect. 5 to explain the trace extraction algorithm for tracing
features and their interactions to implementation artifacts.
Section 6 describes the extraction of dependencies between
feature traces. Section 7 provides a detailed evaluation and
analysis of the presented approach on six case studies from
different domains and of varying size. Finally we present

123

http://www.jku.at/isse/content/e139529/e126342/e219248/e289826
http://www.jku.at/isse/content/e139529/e126342/e219248/e289826

Variability extraction and modeling for product variants 1181

related work in Sect. 8 and conclude with a summary in
Sect. 9 and an outlook on future work in Sect. 10.

2 Background and running example

In this section, we introduce our running example, a set of
simple software variants, to illustrate the challenges faced for
extracting variability information. In addition,we provide the
basic terminology of SPLs and of our approach.

2.1 Running example and basic definitions

The starting point of ourwork is a set of existing product vari-
ants, and for each variant we require the knowledge of what
features it provides. Let us consider a set of simple drawing
applications as our running example. Each variant supports a
subset of the following features: the ability to handle a draw-
ing area (BASE), draw lines (LINE) and rectangles (RECT),
select a color to draw with (COLOR), and wipe the draw-
ing area clean (WIPE). Let us assume that three variants P1,
P2, and P3 are available already, each providing a distinct
set of features, see Table 1, and each having its own distinct
implementation, see code snippets in Fig. 1.

Definition 1 (Product Variant) A Product Variant P ∈ P

is a relation (Features,AT) where Features ⊆ F is
the set of features that P provides and AT is an artifact tree.
An artifact tree is a generic tree structure comprised of a
set of implementation artifacts I ∈ I that represents a con-
crete composition of the artifacts I that is specific to product
variant P and implements the features P provides. P denotes
the universe of all product variants, F the universe of all
features and I the universe of all implementation artifacts.
We, respectively, denote the Features and AT elements of
product variant P with P.Features and P.AT.

Artifacts realize the implementation of product variants
and can be anything from source code to models, test cases
or requirements, etc. The generic tree structure we devised is
capable of representing their hierarchy and order.We provide
more details in Sect. 4.

A challenge is that the behavior of a single feature
may depend on the presence or absence of other fea-
tures. This fact that features influence each other is referred

Table 1 Initial drawing application product variants

Products BASE LINE RECT COLOR WIPE

Product P1 � � �
Product P2 � � �
Product P3 � � � �

Product P1 (BASE, LINE, WIPE):

1 class Canvas {
2 List <Line > lines;
3 void wipe() {
4 this.lines.clear ();
5 } ...
6 }
7 class Line {
8 Line(Point start) {...} ...
9 }

10 class Main extends JFrame{
11 initContentPane () {
12 toolPanel.add(lineButton);
13 toolPanel.add(wipeButton);
14 } ...
15 }

Product P2 (BASE, LINE, COLOR):

16 class Canvas {
17 List <Line > lines;
18 void setColor(String c) {...} ...
19 }
20 class Line {
21 Line(Color c, Point start) {...} ...
22 }
23 class Main extends JFrame{
24 initContentPane () {
25 toolPanel.add(lineButton);
26 toolPanel.add(colorsPanel);
27 } ...
28 }

Product P3 (BASE, LINE, RECT, COLOR):

29 class Canvas {
30 List <Line > lines;
31 List <Rect > rects;
32 void setColor(String c) {...} ...
33 }
34 class Line {
35 Line(Color c, Point start) {...} ...
36 }
37 class Rect {
38 Rect(Color c, int x, int y) {...} ...
39 }
40 class Main extends JFrame{
41 initContentPane () {
42 toolPanel.add(lineButton);
43 toolPanel.add(rectButton);
44 toolPanel.add(colorsPanel);
45 } ...
46 }

Fig. 1 Source code snippets for drawing application product variants

to as feature interaction and is a well-known problem
in software reuse [3]. To distinguish whether artifacts of
a product implement a single feature or a feature inter-
action we introduce a notation and terminology inspired
by Liu et al. [27]. We use modules, a concept more
descriptive than features to express relations between fea-
tures and implementation artifacts. We distinguish mod-

123

1182 L. Linsbauer et al.

ules of two kinds: base modules and derivative
modules.

Definition 2 (Module) A module is a set of signed (positive
or negative) features. A basemodule is amodule that consists
of exactly one positive feature and no negative features. A
derivative module contains at least one positive feature and
any number of negative features.

A base module f = {F} labels artifacts that implement a
given featureF ∈ Fwithout any feature interactions.We refer
to them with the feature’s name written in lowercase. For
example consider field List<Line> lines in Lines 2,
17 and 30 of Fig. 1, for product variants P1, P2 and P3,
respectively. This artifact, code in our case, belongs to the
base module line because it must be present in all product
variants that include featureLINE independently of anyother
features/interactions.

A derivative module δn(F,f1, ...,fn) = {F,f1, ...,fn}
labels artifacts that implement an interaction between n + 1
features, where F ∈ F is a positive feature and fi is Fi ∈ F

(if feature Fi is selected) or ¬Fi (if not selected), and n is
the order of the derivative. A derivative module of order n
thus represents the interaction of n + 1 features. We treat
derivative modules simply as sets of cardinality n + 1 con-
taining all features (positive or negative) that are involved in
the interaction. A derivative module of order n = 0 is a base
module. An example of a derivativemodule is the constructor
for class Line in Fig. 1 which is found in all three variants
butwith different arguments. The constructor Line(Point
start) in Line 8 reflects the situation where feature LINE
is selected but featureCOLOR is not. This artifact corresponds
to the derivative module δ1(line,¬color). Similarly, the
constructors in Line 21 and Line 35 have an argument for
color, which reflects the fact that features LINE and COLOR
are selected, and represent the artifacts of the derivativemod-
ule δ1(line,color).

We define a number of auxiliary functions for working
with features and modules.

Definition 3 (Negate Features nF) To compute for a set of
features F the set F̄ of the same features negated:

nF(F) = {¬ f | f ∈ F}.

Definition 4 (Compute Modules from Features f 2m) To
compute the set of modules from a set of positive (i.e.,
selected) features F and a set of negative (i.e., not selected)
features F̄ :

f 2m(F, F̄) = {p ∪ n | p ∈ 2F \ ∅ ∧ n ∈ 2F̄ }.

Definition 5 (UpdateModules with Features uM) To update
a set of modulesM with a set of previously unknown features

F̄ :

uM(M, F̄) = {m ∪ n | m ∈ M ∧ n ∈ 2F̄ }.

2.2 Variability modeling with feature models

Variability models describe what the valid product variants
are that form an SPL. Feature Models (FMs) are the de facto
standard for research on variability modeling that describe
the features—increments in program functionality [7]—of a
software system and their relations [20].We use featuremod-
els to help us depict better the case studies used for evaluation
as well as to help us assess the quality of the variability infor-
mation that our approach extracts. However, we should stress
that variability models (feature models or otherwise) are not
a requisite or assumption for our approach to be applicable.
These points will be further elaborated in the upcoming sec-
tions.

A feature model is a tree-like structure with the nodes
being features. The root node of a feature model is always
included in all product variants. A feature can only be part
of a product variant if its parent feature is also part of it. A
feature can be mandatory (denoted with a filled circle at the
child end of an edge, see Fig. 2a) or optional (denoted with
an empty circle at the child end of an edge, see Fig. 2b). A
mandatory feature is part of a product variant whenever its
parent feature is. An optional feature may or may not be part
of a product if its parent is. Features can be grouped into:

– an inclusive-or relation, denoted with a filled arc (see
Fig. 2d), where one or more features of the group can be
selected, or

– an exclusive-or relation, denoted with an empty arc (see
Fig. 2c), where exactly one feature must be selected.

In addition to parent–child relations, there can also be
relationships between features across the tree structure of
the feature model. These are called cross-tree constraints
(CTCs). A requires constraint expresses that the presence of
a feature A implies the presence of another feature B and is
denoted as a dashed single-arrow line from A to B (see top
of Fig. 2e). An excludes constraint expresses that if a feature
A is selected another feature Bmust not be selected which is
denoted as a dashed double-arrow line between A and B (see
bottom of Fig. 2e). Extra constraints that cannot be expressed
by these means are usually added to the feature model in the
form of propositional logic expressions [8].

3 Motivating scenario

Let us use the case of a clone-and-own scenario to motivate
our need for variability information. The starting point of this

123

Variability extraction and modeling for product variants 1183

Fig. 2 Feature model notation

scenario is a set of existing product variants and for each vari-
ant the knowledge ofwhat features it implements. In practice,
when developing a new product variant within such context,
usually the existing product variant that is most similar to the
new one is cloned and then modified and extended, possibly
by selectively cloning implementation fragments from other
existing product variants [13]. However, this task is mostly
carried out manually and performed in a very ad hoc and
undisciplined manner, which makes it not only complex but
also prone to errors and time-consuming. Already-existing
implementation of features and functionality may easily be
missed causing their re-implementation, which is not only a
waste of time but also has a negative impact on maintainabil-
ity because the same features are implemented several times
in different ways across different product variants.

We envision a more structured and systematic approach
for developing a newproduct variant in a clone-and-own con-
text with the potential to be partially automated. It consists
of three steps:

1. Extract implementation fragments from existing product
variants that will be reused in the new variant.

2. Compose the extracted implementation fragments to
form the new variant.

3. Complete the newvariant, if needed, by adding, for exam-
ple, features and interactions that did not yet exist in any
existing variant.

This steps demand detailed knowledge of all product vari-
ants and their implementation artifacts. Without this detailed
knowledge, for instance, artifacts can be easily missed or
misidentified leading to extracted fragments with missing
or unnecessary implementation. What makes the extraction
task specially difficult is the identification of implementation
fragments that are responsible for interactions among fea-
tures [2]. The manual composition requires the merging of
all relevant implementation artifacts while remaining faithful
to structure and artifact dependencies. This step is difficult
because merged implementation fragments are rarely cor-

rect or complete. Finally, the completion step has to fill in
missing artifacts that could not be found during the extrac-
tion (i.e., new features and feature interactions, or perhaps
artifacts that were overlooked by software engineers). The
completion also has to address the shortcomings of manual
extraction and composition. For example, misidentified arti-
facts need to be eliminated or repaired. All this additional
completion work may lead to different implementations of
the same functionality which in turn can make the future
maintenance of variants a significantly harder endeavor.

Now, let us consider that we want to extend the set of
drawing applications by creating a new product variant P4
with features BASE, LINE, RECT and WIPE, by applying
clone-and-own. The goal is to extract as much code from P1,
P2, and P3 as possible. For example, a software engineer
might start off by copying the entire product variant P1 into
P4 because it is a “close fit” and then extract and compose
code for feature RECT from product variant P3. Doing so is
not trivial. For example, we would need to copy the Rect
class from P3 to P4 but change its constructor as it currently
has a Color c argument (feature COLOR was not selected
for P4). So feature RECT without feature COLOR behaves
differently, and therefore, the extracted code from P3 con-
tains surplus code that the software engineer has to remove.
Figure 3 depicts a possible realization of product variant P4.

There are other problems, however. Since feature RECT
has never appeared with feature WIPE before, there is no
code that can be associated with module δ1(rect,wipe).
Indeed,without this feature interaction the newvariantwould
fail to wipe rectangles. The software engineer would have
to add this missing code (see Line 6 in Fig. 3). Moreover,
the software engineer would also need to decide on the
order of certain statements. Consider for instance method
initContentPane() in Line 17 of Fig. 3. While it may
be clear that the buttons associated for drawing lines and
rectangles and for wiping the drawing area clean need to be
added to the drawing area, it is not obvious in what order
they should be added. Looking at the existing three product
variants shows that the button for drawing lines always goes
first in this concrete set of drawing applications; however, it is
not clear in which order the buttons for rectangles andwiping
shall appear as the feature interaction among features RECT
and WIPE has not been present in any of the three existing
product variants. The software engineer then has to decide
manually on an order, see for example Lines 19 and 20 in
Fig. 3.

Furthermore, let us assume now that we want to create
more product variants. This process that we just described
for product variant P4 should be repeated anew for each new
variant. It should be noted though that once a certain number
of product variants is reached, it may pay off to refactor these
variants into an SPL instead of dealing with them individu-
ally [18]. For our motivation scenario, let us make a product

123

1184 L. Linsbauer et al.

Product P4 (BASE, LINE, RECT, WIPE)

1 class Canvas {
2 List <Line > lines;
3 List <Rect > rects;
4 void wipe() {
5 this.lines.clear ();
6 this.rects.clear (); // added
7 } ...
8 }
9 class Line {

10 Line(Point start) {...} ...
11 }
12 class Rect {
13 Rect(int x, int y) // changed
14 {...} ...
15 }
16 class Main extends JFrame{
17 initContentPane () {
18 toolPanel.add(lineButton);
19 toolPanel.add(rectButton); // 1st
20 toolPanel.add(wipeButton); // 2nd
21 } ...
22 }

Fig. 3 Source code for Completed product P4

Table 2 Draw product line (DPL) variants

Products BASE LINE RECT COLOR WIPE

Product P1 � � �
Product P2 � � �
Product P3 � � � �
Product P4 � � � �
Product P5 � �
Product P6 � � � �
Product P7 � � �
Product P8 � �
Product P9 � � �
Product P10 � � �
Product P11 � � � �
Product P12 � � � � �

line, Draw Product Line (DPL), out of our draw variants
that supports the same five features; a total of twelve differ-
ent variants shown in Table 2. The feature model of DPL is
shown in Fig. 4. There are several techniques to reverse engi-
neer feature models based on the features of their variants,
for example refer to [17,26,28].

4 Variability extraction data structures and
operations

This section introduces basic data structures and operations
that will be used in the subsequent sections to explain and
formalize trace and dependency extraction.

Base

Wipe Line Rect Color

Fig. 4 Feature model for the draw case study

4.1 Artifacts

We refer to the Java code in Fig. 1 as Artifacts. In fact, arti-
facts can be of many different types, e.g., text strings, AST
(Abstract Syntax Tree) nodes from a programming language
parser, or Ecore objects from for example UML models; for
example, in Java such nodes can be classes, fields, methods,
statements, etc. Artifacts can contain references to other arti-
facts, e.g., in Java a statement calling a method references
the called method.

4.2 Artifact trees

Artifacts are organized as Artifact Trees that represent the
hierarchy and the order of the artifacts. In Java, for example,
a statement is contained in amethodwhich again is contained
in a class.

Definition 6 (Artifact Tree) An Artifact Tree is a tree of arti-
fact nodes with arbitrary depth and structure. An Artifact
Node is a four-tuple (SN,Artifact,Ordered,Solid).
SN ∈ N is the node’s sequence number. Artifact ∈
I is an arbitrary implementation artifact. Ordered ∈
{true, f alse} determines whether the children of the node
are ordered. Solid ∈ {true, f alse} determines if the node
is considered to be part of the tree or just a placeholder to
keep a path to its children.

A node’s sequence number is initially 0 and for children
of unordered nodes it remains 0. For ordered nodes, the order
of their childrenmatters, for example amethod in Javawhose
children are statements whose order of course matters. The
sequence number is necessary because children of ordered
nodes are not uniquely identified by their artifact (e.g., in
Java a method can contain the same statement several times
at different positions).

A solid node is considered part of the tree, whereas non-
solid nodes are just placeholders to keep a path to the root
of the tree for solid nodes further down in the tree and to
preserve the tree structure for solid nodes. Therefore every
leaf node in an artifact tree must always be a solid node.
Initially in a product variant every node is solid.

For example, Fig. 5a, b show the artifact trees for the
class Canvas of product variants P1 and P2, respectively.
Node Canvas represents a Java class. It is a solid unordered

123

Variability extraction and modeling for product variants 1185

Canvas

P1.AT

wipe() lines

1: lines.clear()

(a)

Canvas

P2.AT

setColor() lines

(b)

Canvas

P2.AT \ P1.AT

setColor()

(c)

Canvas

P1.AT \ P2.AT

wipe()

1: lines.clear()

(d)

Canvas

(P1.AT \ P2.AT) ∪ (P2.AT \ P1.AT)

wipe()

1: lines.clear()

setColor()

(e)

Canvas

P1.AT ∩ P2.AT

lines

(f)

Fig. 5 Minus (c, d), Union (e), and Intersection (f) operations between
artifact trees of product P1 (a) and Product P2 (b)

node which means the order of its children wipe() and
line is irrelevant. The node wipe, however, represents a
method and therefore is an ordered node, which is why its
child lines.clear() has a sequence number of one.

4.3 Operations on artifact trees

To be able to compare and combine artifact trees, we define
a number of operations on trees that resemble their set coun-
terparts.

Definition 7 (ArtifactNodeEquivalence) Two artifact nodes
n1 and n2 from two different artifact trees are equivalent
(n1 ≡ n2) iff their sequence numbers are equal, their artifacts
are equal, and their parent nodes are, respectively, equivalent.

Definition 8 (Artifact Tree Subset Operator) An artifact tree
AT1 is a subset of another artifact tree AT2 (AT1 ⊆ AT2) iff
for every solid node in AT1 there is an equivalent solid node
in AT2.

Definition 9 (Artifact Tree Intersection Operator) An arti-
fact tree AT is the intersection of two other artifact trees AT1
and AT2 (AT = AT1 ∩ AT2) iff AT ⊆ AT1 and AT ⊆ AT2
and for every solid node in AT1 for which there is an equiva-
lent solid node in AT2 there is also an equivalent solid node
in AT .

Definition 10 (Artifact Tree Difference Operator) An arti-
fact tree AT is the difference of two other artifact trees AT1
and AT2 (AT = AT1 \ AT2) iff for every solid node in AT1
for which there is no equivalent solid node in AT2 there is an
equivalent solid node in AT and AT ⊆ AT1.

Definition 11 (Artifact Tree Union Operator) An artifact
tree AT is the union of two other artifact trees AT1 and
AT2, denoted with AT = AT1 ∪ AT2, iff AT1 ⊆ AT and
AT2 ⊆ AT and for every solid node in AT there is an equiv-
alent solid node in AT1 or AT2 or in both.

Definition 12 (Artifact Tree Cardinality) The cardinality
|AT | of an artifact tree AT is the number of solid nodes
in AT .

An example of these operations is given in Fig. 5 bymeans
of product variants P1 (Fig. 5a) and P2 (Fig. 5b), considering
only the artifacts of classCanvas for simplicity. Solid nodes
are depicted with a solid border and non-solid nodes with a
dotted border. Figure 5d shows the result of P1.AT \ P2.AT.
Those artifacts being unique to P1.AT remain solid while
the common artifacts do not. The intersection operation is
shown in Fig. 5f which depicts the result of P1.AT ∩ P2.AT
containing all the solid artifacts being common to P1.AT and
P2.AT. Figure 5e shows the union of the two artifact trees in
Fig. 5d, c.

Note that, after performing such operations on artifact
trees, they will likely not be well formed (e.g., in the case
of source code well formed could mean compilable) any-
more on their own. For example the artifact tree in Fig. 5d
is missing the declaration of the referenced variable lines
and would therefore depend on another artifact tree contain-
ing that declaration. This is what will be discussed in Sect. 6
as the extraction of dependencies between modules.

This simplified example shows possible artifact trees for
the case of Java source code, which are similar to ASTs, in
fact, these trees were derived from ASTs generated by the
Java compiler. However, the used artifact trees can also rep-
resent, for example, UML diagrams. When using the Eclipse
Modeling Framework (EMF) [36], such diagrams are stored
in an Ecore data structure which, again, is a tree structure and
thus fits perfectly our concept of artifact trees.

4.4 Ordered nodes and sequence graphs

For ordered nodes, a trace is more than just the information
of whether an artifact is required for the implementation of
a module or not. In addition, the ordering of the artifacts
must be considered. For example, the implementation of a
certain module could be reflected in the change of the order
of artifacts, and when merging the artifacts of an ordered
node that stem from different traces it is necessary to know
in what order they must be merged. Therefore, for every set
of equivalent ordered nodes a sequence graph is maintained.

123

1186 L. Linsbauer et al.

Definition 13 (Sequence Graph) A sequence graph is a
directed, acyclic graph with exactly one start node and
exactly one end node. Transitions between nodes are labeled
with the child artifact nodes of the ordered node the sequence
graph belongs to.

A sequence graph holds information equivalent to a partial
order relation describing the order of the nodes’ direct chil-
dren among all traces. Every possible path from the start
node to the end node describes a possible ordering and con-
tains every child artifact node exactly once. The nodes of the
sequence graph themselves do not contain any information.

Prior to the comparison of artifact trees, we align every
new ordered node’s children to the corresponding sequence
graph. If no such sequence graph exists, then a new one is
created. During the alignment, the sequence numbers of the
children of every new ordered node are updated in such a
way that the corresponding sequence graph (i.e., the respec-
tive partial order relation) is not violated (remember: nodes’
sequence numbers determine, in addition to the nodes’ arti-
facts, whether two nodes are considered equivalent) and a
cost function is minimized. For our purpose, we use a cost
function that minimizes the number of new unique sequence
numbers assigned, i.e., the cost functionmaximizes the num-
ber of matched nodes, meaning as many nodes as possible
with an artifact equal to an already-existing node’s artifact
in the sequence graph are assigned the same sequence num-
ber if possible without violating the sequence graph (i.e.,
the underlying partial order relation). After the alignment,
the sequence graph is updated to reflect the newly learned
(preserving all original) orderings of artifacts.

An example from our set of drawing applications of
such a sequence graph, the alignment of a new artifact
sequence, and the subsequent update of the sequence graph
are shown in Fig. 6. The sequence graph SG for the ordered
node representing method initContentPane() in class
Main expressing the orders of the statements for the initial
three product variants is shown in Fig. 6b and the cor-
responding partial order relation in Fig. 6c. The sequence
numbers that were assigned to the statement artifacts are
listed in Fig. 6a along with their respective abbreviations
so that they fit into the figures. The sequence graph SG so
far expresses that node [1:l] (i.e., the node with artifact
toolPanel.add(lineButton) and sequence number
1) always goes first and that node [3:c] always comes after
[4:r], everything else is undetermined.

When adding new product variant P4, its statements of
method initContentPane() (shown in Fig. 6d, initially
without sequence numbers assigned) must first be aligned to
SG (i.e., a sequence number is assigned to each statement so
that SG is not violated and the chosen cost function—here
the number of newly introduced sequence numbers—is min-
imized). The alignment is shown in Fig. 6e. No new sequence

[1: l] l = toolPanel.add(lineButton)
[2: w] w = toolPanel.add(wipeButton)
[3: c] c = toolPanel.add(colorsPanel)
[4: r] r = toolPanel.add(rectButton)

(a) Sequence Numbers for Statements Artifacts of Method
initContentPane()

sequence graph
SG

1: l

4: r 2: w

3: c 2: w 4: r

2: w 3: c

(b)

1:l

corresponding
partial order

relation

4:r

3:c

2:w

(c)

new sequence
for P4

l

r

w

(d)

new sequence
aligned to SG

1: l

4: r

2: w

(e)

updated sequence
graph SG

1: l

4: r

3: c 2: w

2: w 3: c

(f)

1:l

corresponding
updated

partial order
relation

4:r

3:c 2:w

(g)

Fig. 6 Draw sequence graph example

numbers needed to be introduced as all artifacts were already
known. However, the order between these known artifacts
was not fully known. Therefore, after this alignment the
sequence graph SG is updated to reflect the new knowledge
obtained from P4 that the button for rectangles [4:r]must
be added before the button for wiping the canvas [2:w].
Therefore, the rightmost node of SG (marked in black in
Fig. 6b) can simply be removed, resulting in the updated
sequence graph SG ′ shown in Fig. 6f, again with the corre-
sponding partial order relation in Fig. 6g. The order between
the colors panel and the wipe button still cannot be deter-
mined.

This alignment process is repeated for every pair of
ordered nodes whenever two artifact trees are compared.
Note that the sequence graph shrinks in size the more order
information becomes available, as nodes are removed from
the sequence graph whenever the order between artifacts
becomes more determined.When the order between artifacts
is fully determined only one path through the sequence graph
remains (i.e., the sequence graph is simply a list) describing
exactly the one valid order.

123

Variability extraction and modeling for product variants 1187

5 Trace extraction

The trace extraction is based on five rules. Given two product
variants A and B: The first two rules quickly isolate modules
to which certain implementation artifacts at least trace (to
compute Minimal traces).

1. Common artifacts at least trace to common modules.
2. Artifacts in A and not B at least trace to modules that are

in A and not B, and vice versa.

However, in rare cases two product variants can have code in
commonwithout havingmodules in common.This is the case
for non-unique or disjunctive traces, where implementation
artifacts trace to different disjunctive modules, i.e., the arti-
facts are included in a variant if at least one of the modules is
included. The next three rules help to deal with such cases by
identifying to which modules artifacts certainly cannot trace
(Not traces) and to which they can at most trace (Maximal
traces).

3. Artifacts in A and not B cannot trace to modules that are
in B and not A, and vice versa.

4. Artifacts in A and not B can at most trace to modules that
are in A, and vice versa.

5. Artifacts in A and B can at most trace to modules that are
in A or B.

These rules require the comparison of module sets as well
as different artifact trees. The comparison of the module sets
is based on simple set operations. Figure 7 shows the com-
parison of the modules of product variants P1 and P2. The
comparison of artifact trees is performed in a similar fash-
ion using the operators defined in the previous section. The
extracted information is stored in the form of associations
between modules and artifacts that trace to these modules.

Definition 14 (Association) An Association A ∈ A is a
relation (M,AT) of a four-tuple of module sets M = (Min,

All,Max,Not) and an artifact tree AT.

Associations are used by the extraction algorithm as con-
tainers that are incrementally filled. The module sets A.M

f2m(P1.Features,
F \ P1.Features)

f2m(P2.Features,
F \ P2.Features)

base,
δ1(base,
line),
line

wipe,
δ1(base, wipe),
δ1(line, wipe),
δ1(line,¬color),
. . .

color,
δ1(base, color),
δ1(line, color),
δ1(line,¬wipe),

. . .

Fig. 7 Modules comparison of products P1 and P2

are essentially lower and upper bounds on the modules that
are realized (or not realized) by the artifact tree A.AT of
association A. A.M.Min is the set of modules to which the
association’s artifacts at least trace (seeRules 1 and 2 above),
A.M.Not is the set of modules to which the artifacts cannot
trace (Rule 3), A.M.Max is the set of modules to which the
artifacts can at most trace (Rules 4 and 5) and A.M.All is
the set of all modules with which the artifacts have ever been
associated (needed for computing A.M.Max).

The Trace Extraction incrementally refines an initially
empty set of associations according to new information that
becomes available when adding a new input product variant,
i.e., given a product variant P ∈ P and a set of associa-
tions A ∈ A, it produces a refined set of associations A′.
Henceforth, we refer to such a set of extracted associations
as database.

Definition 15 (Trace Extraction) Extraction : P × 2A
→
2A where P denotes the universe of all product variants and
A denotes the universe of all associations.

The high-level pseudo code for the extraction process is
shown in Algorithm 1. Lines 3 to 7 do the initialization.
Lines 9 to 27 iterate over every association a in A, update its
modules with new features (Line 11) and perform the align-
ment and sequencing of matching ordered nodes (Line 13).
Then the associations are updated according to the Rules
1 to 5 stated above (Lines 15 to 23). Association a in A
is compared to the new association anew by computing an
association for the intersection aint and updating the old asso-
ciation a and the new association anew accordingly. Line 26
adds the intersection association aint to the set of associations
Anew to be returned. Lastly, the remainder of the new asso-
ciation anew is added to the set in Line 30 and then returned.

Note that our trace extraction approach captures exactly
the variability present in the used input product variants.
This is ideal for sets of well-maintained product variants.
However, if the variants have been maintained inconsistently
and therefore have diverged from each other (e.g., bug fixes
applied to only some of the variants or features implemented
slightly differently) also all the inconsistencies are captured.
This does not mean that the extracted traces are wrong, but it
simply means that they might be more complex and difficult
to interpret as for example different traces (i.e., associa-
tions) for different implementations of the same feature are
extracted.

6 Dependency extraction

This section describes the dependency graph extraction from
a set of associations A. A dependency graph represents a
set of constraints on possible feature combinations imposed
by their implementation. They can be regarded as simple

123

1188 L. Linsbauer et al.

Algorithm 1 Trace Extraction Algorithm

1 Input: Product p, Set of Associations A
2
3 Fall = set of all features occuring in any association a ∈ A
4 M = f 2m(p.Features, nF(Fall \ p.Features)); // modules for product p
5 Fneg = nF(p.Features \ Fall); // new features negated
6 anew = ((M, M, M,∅), p.AT); // initial association for p
7 Anew = ∅; // set of new associations
8
9 for a in A do

10 // update modules in a
11 a = ((uM(a.M.Min, Fneg), uM(a.M.All, Fneg), uM(a.M.Max, Fneg), uM(a.M.Not, Fneg)), a.AT);
12
13 doAlignmentAndSequencing(anew, a);
14
15 // compute intersection
16 aint = ((a.M.Min ∩ anew.M.Min, a.M.All ∪ anew.M.All, ∅, ∅), a.AT ∩ anew.AT);
17 aint .M.Max = aint .M.All \ aint .M.Not;
18 // update existing association a
19 a = ((a.M.Min \ aint .M.Min, a.M.All, ∅, a.M.Not ∪ anew.M.All), a.AT \ aint .AT);
20 a.M.Max = a.M.All \ a.M.Not;
21 // update new association anew
22 anew = ((anew.M.Min \ aint .M.Min, anew.M.All, ∅, anew.M.Not ∪ a.M.All), anew.AT \ aint .AT);
23 anew.M.Max = anew.M.All \ anew.M.Not;
24
25 // add refined association a and intersection aint to set of new

associations Anew
26 Anew = Anew ∪ {aint , a};
27 end for
28
29 // add remainder of new association to result
30 Anew = Anew ∪ {anew};
31
32 return Anew;

variability models of a system describing what combinations
of features can be selected to form product variants.

Definition 16 (Dependency Graph) A dependency graph
DG : A × A
→ N is a function that maps to every ordered
pair of associations (A1, A2) anumber denotinghowstrongly
A1 depends on A2.

DG(A1 ∈ A, A2 ∈ A)

= |{N1 | ∃N2 ∈ A2.AT : N1 ∈ A1.AT ∧
N1.Solid = N2.Solid = true ∧
child(N1.Artifact, N2.Artifact)}|

+
|{N1 | ∃N2 ∈ A2.AT : N1 ∈ A1.AT ∧

N1.Solid = N2.Solid = true ∧
uses(N1.Artifact, N2.Artifact)}|

The dependency graph is computed based on dependen-
cies between implementation artifacts in the artifact trees of
associations. The first summand expresses the dependencies
of child artifacts in A1 on their parent artifacts in A2 (e.g., a

method in A1 depends on its containing class in A2), the sec-
ond summand expresses the dependencies of artifacts in A1

on other artifacts in A2 they use in someway (e.g., a statement
in A1 calling a method in A2 depends on that method). From
the dependencies between artifact trees, we derive depen-
dencies between associations and can thus further derive
dependencies between modules. In other words, based on
artifact dependencies which are given (e.g., by source code
constraints), we compute dependencies between associations
and therefore between the modules contained in the associa-
tions.

Just like feature models, dependency graphs can be repre-
sented as a set of constraints in propositional logic. Every
dependency, i.e., every edge in the graph, represents one
constraint. The propositional logic representation of a depen-
dency DG(A1, A2) between two associations A1 and A2 is

∨

f rom∈A1.Min

f rom ⇒
∧

to∈A2.Min

to

Note that if for any association A, there are no minimal mod-
ules, i.e., A.Min = ∅, then we use A.Max instead. The

123

Variability extraction and modeling for product variants 1189

propositional logic expression for the whole dependency
graph DG is simply the conjunction of all its individual
dependencies.

Figure 8 shows the dependency graph for our drawing
application running example after having used all its twelve
product variants as input to the extraction process. The nodes
in the dependency graph are labeled with the correspond-
ing association’s lowest order modules for sake of brevity.
Only the Min modules are considered here, unless there are
no Min modules in an association in which case the Max
modules are used. Higher-order modules are not depicted
for space reasons and to avoid clutter. Base modules are
depicted as solid boxeswhile derivativemodules are depicted
as dashed boxes. Arrows between nodes represent a depen-
dency. The number on an arrow aswell as its thickness denote
the strength of a dependency, that is, for associations A1

and A2 this number corresponds to DG(A1, A2). For better
readability the self-dependencies are not shown. We found
that for base modules, they were always by far the strongest,
for example the association with module base depends on
itself with a strength value of 166, or line depends on itself
with a strength of 93. For associations with derivative mod-
ules, the self-dependencies were sometimes matched or even
surpassed by the dependencies to the corresponding base
modules, e.g., δ1(rect,¬color) depends on itself with
a strength of 14 and on rectwith a strength of also 14. This
could be a good indication for the extracted traces being cor-
rect as this is evidence of high cohesion within traces.

Based on the dependency graph, we can make the follow-
ing observations:

– Aside from the self-dependencies, the strongest depen-
dencies are toward the association containing the base

8

23

22

19

7

1

9

1

1

12
14

1

1
1

1

1
1

1

base

wipe line rect color

δ1(line,¬color)

δ1(line, color)

δ1(rect,¬color)

δ1(rect, color)

δ1(line, wipe) δ1(rect, wipe)

Fig. 8 Dependency graph for draw case study

module basewhich corresponds to feature BASEwhich
in turn is the root node of the DPL feature model.

– The most and the strongest dependencies originate from
the associations containing the other base modules (e.g.,
wipe, line, rect, or color).

– Associations with derivative modules depend mostly
on the associations that contain the corresponding base
modules, e.g., the derivative module δ1(rect,color)

depends on the two associations containing module
rect and module color.

– Associations with negative features never have depen-
dencies to associations with positive versions of the
same features; otherwise, this association could never be
included in a product variant because the dependency
would always be violated.

We argue that these observations, in general, are good indica-
tions for the correctness of the extracted traces. What is also
of interest is that the extracted dependency graph is consis-
tent with the feature model, i.e., the constraints imposed by
the feature model imply the constraints of the dependency
graph. Recall that a feature model denotes the set of valid
product variants. A good indication that the extracted infor-
mation is correct is when none of the variants from a feature
model violate any of the dependencies of the dependency
graph. The feature model, however, might impose additional
constraints to restrict the set of possible product variants fur-
ther, i.e., the constraints of a feature model must imply the
constraints of the dependency graph. For example, the fea-
ture model requires at least one of the two features LINE and
RECT to be present in every product variant because other-
wise the variant would make no sense. However, this is not
a requirement in the dependency graph.

Nonetheless, in cases where there is no feature model
available, as for example when reverse engineering a set of
product variants into a product line, the dependency graph
can provide a good starting point for reverse engineering a
feature model.When only considering the associations in the
dependency graph that correspond to basemodules, the graph
already resembles verymuch theDPL featuremodel in Fig. 4.
We argue that the additional constraints that such dependency
graph provides can be useful for feature model reverse engi-
neering approaches as our recent work suggests [5].

7 Evaluation

This section evaluates the proposed approach using six dif-
ferent case studies.

7.1 Methodology

As a first proof of correctness, we check that the extracted
dependency graphs are consistent with the feature models.

123

1190 L. Linsbauer et al.

Table 3 Case studies overview

Case study #F #P LoC #Art

DPL 5 12 287–473 487

VOD 11 32 4.7–5.2K 5.5K+

ArgoUML 11 256 264–344K 200K+

ZipMe 7 32 5–6.2K 6.2K+

GOL 15 65 874–1.9K 1.3K+

MA 13 5 35–59K 88K+

#F: Number of Features, #P: Number of Products, LoC: Range of Lines
of Code, #Art: Number of Distinct Artifacts

In a next step, the consistency of the extracted traces with
the given product variants is evaluated by using them to
reconstruct product variants and comparing them to the orig-
inals. Finally, detailed metrics for the extraction process are
explained and shown for each of the case studies. The section
concludes with an analysis of the results.

We follow the following overall methodology for the eval-
uation:

– We briefly introduce the used case studies. Each case
study consists of a set of product variants. Additionally,
every case study (except for one) also comes with a fea-
ture model that expresses its product variants.

– Using the case studies that came with a feature model,
we evaluate the correctness of the extracted dependency
graphs. The detailed methodology is further explained in
Sect. 7.3.

– For every case study, we verify the correctness of the
extracted traces by using them to reconstruct product
variants and comparing them to their original coun-
terparts. Again, the detailed methodology is further
explained in Sect. 7.4.

– Finally, we show some detailed metrics about the extrac-
tion process and discuss them.

7.2 Case studies

An overview of the used case studies is shown in Table 3. The
following subsections explain them in detail. All of these case
studies are implemented in Java. Hence, artifacts include for
example classes,methods, fields, and statements. The artifact
trees for the case studies were obtained using a Java com-
piler’s ability to parse Java source code and generate ASTs
from it that can be retrieved through the provided APIs. Java
compilers that provide such functionality are for example the
Java Compiler Tree API1 that comes with the Oracle JDK or
the Eclipse Java Development Tools2.

1 http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/.
2 http://www.eclipse.org/jdt/.

VOD

Pause PlayImm StartMovie StartPlayer VRCInterface QuitPlayer SelectMovie

StopMovie DetailChangeServer

Fig. 9 VOD feature model

Our case studies were selected to range from ideal sce-
narios where product variants are well maintained to worst
scenarioswhere variants have significantly diverged.Thefirst
five cases represent a more idealistic scenario because they
come fromSPLexamples and are thus bettermaintained vari-
ants. However, please note that many of these case studies
were not designed as product lines from the very begin-
ning but refactored at a later time, which is why we believe
that they are representative to a certain degree even beyond
product lines. The last case study ModelAnalyzer (MA) rep-
resents the other extreme. MA has evolved over a period of
more than five years. It was developed by many students and
engineers for different purposes and goals and with differ-
ent coding styles. In addition, only five variants are available
which couldmake it harder for the extraction to achieve good
results since the extraction process can only perform few iter-
ations to refine the traces.

7.2.1 Draw product line (DPL)

The DPL case study is a set of simple drawing applications
thatwas refactored into anSPLandused as a running example
throughout this paper.

7.2.2 Video on demand (VOD)

Video on demand (VOD) is an SPL for video-on-demand
streaming applications. It started out as a single product
which was then refactored into a product line. It supports
eleven features of which six appear in every variant. The fea-
ture model is shown in Fig. 9. It allows for the generation of
32 product variants.

7.2.3 ArgoUML

The largest case study ArgoUML is an open-source UML
modeling tool that was refactored into an SPL [4,11]. It has
eleven features of which three appear in every product vari-
ant. According to its feature model, shown in Fig. 10, there
are 256 product variants.

123

http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/
http://www.eclipse.org/jdt/

Variability extraction and modeling for product variants 1191

ArgoUML

Diagrams Cognitive Logging

Class State Activity UseCase Collaboration Deployment Sequence

Fig. 10 ArgoUML feature model

Base

CRC ArchiveCheck GZIP Adler32Checksum Compress Extract

Fig. 11 ZipMe feature model

7.2.4 ZipMe

ZipMe is a compression software with seven features and
32 different product variants. Its feature model is shown in
Fig. 11.

7.2.5 Game of life (GOL)

Game Of Life (GOL) is a product line for the game of the
same name. It has 23 features in total of which 8 are declared
as abstract features (shown in italics in the feature model in
Fig. 12)which are used to help structure the featuremodel but
that do not have artifacts associated with them. So effectively
there are 15 different features in this case study.

7.2.6 ModelAnalyzer (MA)

The last case study ModelAnalyzer (MA) is a consistency
checking and repair technology [14]. It is not an SPL, but
rather its variants were created through copying from exist-
ing variants and then developed independently of each other
by different engineers who each had their own goals. In
total, we had five different variants available with 13 fea-
tures altogether. Since MA is not an SPL there is no feature
model available. It is unknown how many possible variants
there would be and what features are mandatory or optional.
Nonetheless, MA can be used in our extraction process as
pointed out in the introduction. Consequently, however, in
this case, the extracted dependency graph cannot be com-
pared to a feature model. This is how we expect scenarios to
be in practice and where the extracted dependency graph is
most useful as it can be used to create a feature model.

The information about the variants (i.e., their source code
and the features they implement) were obtained through
interviews with the respective developers. Difficulties were
for example that some developers had partially implemented

features from other variants they copied from and just left
them in their unfinished state because they did not use these
features anyway. Also common names for features had to
be established because different developers used different
names for the same features. This is only to emphasize
how difficult a case study ModelAnalyzer represents for the
extraction process. Note that the product variants were used
exactly as provided without any preprocessing, i.e., no prior
cleanup of the variants was performed at all.

7.3 Dependency graphs validation

This section compares the extracted dependency graphs to
the corresponding feature models as was done for the DPL
running example in Sect. 6, except for the MA case study for
whichno featuremodel is available. The comparisonbetween
extracted dependency graphs and feature models allows us to
verify that the extracted traces and their dependencies (which
represent the implementation variability of the analyzed sys-
tems) adhere to the respective feature model (representing
the design variability) which would be a strong indication
that the extracted traces are correct. The comparison is based
on the fact that a dependency graph DG as well as a feature
model FM are both comprised of sets of constraints that
can be represented as propositional logic formulas. A depen-
dency graph represents static dependencies between artifacts
and therefore must hold for every valid (i.e., well-formed)
product variant. For a feature model to be variability safe
[5], it must guarantee that all product variants it describes
are well formed (but it does not need to denote all possi-
ble well-formed product variants). The feature model must
therefore imply the dependency graph (i.e., FM �⇒ DG).
The whole process is shown in Fig. 13.

For space reasons only the dependency graphs for theDPL
and VOD case studies are shown as these graphs can become
quite large. In Fig. 14, the dependency graph for the VOD
case study is shown. It is much simpler than the dependency
graph of the DPL case study system. Since for VOD six
features are mandatory and always present in every variant
they all appear in one association which is also the one with
the strongest dependencies. All the other associations depend
on it. In terms ofmodules and the corresponding features, this
again is reflected in the feature model in Fig. 9.

The dependency graphs for the ArgoUML and GOL case
studies were also consistent with the respective feature mod-
els. For the ZipMe case study, however, there was a violation.
The ZipMe feature model denotes product variants with fea-
ture GZIP but without feature CRC. In the dependency graph
however, the featureGZIP requires featureCRC. Upon closer
investigation, we found that this is because GZIP requires
a type defined in CRC. This means the feature model of
the ZipMe case study, as provided by its developers, allows

123

1192 L. Linsbauer et al.

GameOfLife

Model Options View

UndoRedo Test Generator IO PopUpMenu GuiBaseModelBase

DefaultGenerator GeneratorSelection AbstractGenerator ConcreteGenerator

RandDefGen FormDefGen RandGen FormGen

Composed

UndoRedoGen UndoRedoTest UndoRedoGuiBase

Additional Cross-Tree Constraints:
(UndoRedo ∧ AbstractGenerator) ⇔ UndoRedoGen
(UndoRedo ∧ Test) ⇔ UndoRedoTest
(UndoRedo ∧ GuiBase) ⇔ UndoRedoGuiBase
(RandGen ∧ FormGen) ⇔ GeneratorSelection
(RandGen ∧ ¬FormGen) ⇒ RandDefGen
(FormGen ∧ ¬RandGen) ⇒ FormDefGen
(FormGen ∧ RandGen) ⇒ (FormDefGen ∨ RandDefGen)

Fig. 12 GOL feature model

Products P

Feature Model
Dependency

Graph

Variability Information

[expresses]

Trace/Dependency
Extraction

[implies]

Fig. 13 Dependency graphs validation

24 24

23 12 23

startplayer, vod, vrcinterface, selectmovie, startmovie, playimm

changeserver stopmovie detail pause quitplayer

Fig. 14 Dependency graph for VOD case study

for the generation of erroneous product variants. This is an
instance of the optional feature problem [21].

7.4 Trace correctness validation

We also evaluated the correctness of the extracted trace infor-
mation byusing it to generate product variants and comparing
these variants to the original counterparts. This is to show that
the extracted traces are correctly representing the variability
within the product variants. For the generation of product
variants from the extracted variability information, we used
the composition approach of our previous work [15]. For
this purpose for every case study, all the n available prod-

n Original Products P

Trace/Dependency
Extraction

Composition

Variability Information

n Composed Products P ′

Features F

[comparison]

Fig. 15 Trace extraction validation

uct variants were used as input to the extraction. Then, the
extracted traces were used to recompose the product vari-
ants. An overview of the whole process is shown in Fig. 15.
For every product variant, the number of missing and surplus
implementation artifacts were counted and averaged over the
number n of variants. Let P be the original product variant
and P ′ the corresponding (i.e., with the same set of features)
composed product variant.

Definition 17 Surplus(%) = |P′.AT \P.AT |
|P.AT |

Definition 18 Missing(%) = |P.AT \P′.AT |
|(P.AT)|

For every case study, these two metrics were at 0% of
the number of implementation artifacts, meaning that the
extracted traceswere always consistent with the product vari-
ants, which is another strong indication that the extracted
traces are correct.

123

Variability extraction and modeling for product variants 1193

0 20 40 60 80 100

100

101

102

103

104

105

106

107

Input Products [%]

R
un

ti
m
e
[m

s]
Draw VOD ArgoUML
ZipMe GOL MA

Fig. 16 Runtime overview

7.5 Extraction metrics

The purpose of these metrics is to provide more insight into
the extraction process and the quality of the extracted vari-
ability information.

7.5.1 Runtime performance

We measured the runtime of different portions of the extrac-
tion process, not including the parsing of the input product
variants, on an Intel(R)Core(TM) i7-3770CPUwith 3.4GHz
and 16GB of main memory. Eight runs were performed each
with a randomized order of the input product variants and the
results averaged. Figure 16 shows the average runtime after
each newly added product variant on a log-axis. Most of the
runtime is spent on processing the modules and is therefore
dependent on the number of features. This includes comput-
ing modules for new input product variants or comparing
module sets. The processing of the artifact trees only takes
up a relatively small portion of the total runtime as shown
in Table 4. This is especially the case for case studies with
many features (seeGOL), asmore features lead tomoremod-
ules. Lastly, of course a high number of product variants (see
ArgoUML) also increases the runtime.

7.5.2 Modules per order

Recall that the order of a module is a measure for the
number of interacting features. A module of order o rep-
resents o + 1 interacting features. For example, module
δ3(base,line,wipe,color) is of third order which
means it represents the interaction of four features. For every
order, we compute the total number of modules with that

Table 4 Average runtime distribution for modules and artifacts
processing

Case
study

Modules
processing (%)

Artifacts processing (%)

DPL 68.7 31.3

VOD 97.9 2.1

ArgoUML 99.1 0.9

ZipMe 88.8 11.2

GOL 99.9 0.0001

MA 98.9 1.1

order that are associated with at least one artifact in the final
database (i.e., with all available product variants added). This
metric is interesting because it tells us up to what order mod-
ules actually require artifacts to implement them.

The result is shown in Fig. 17. Only theMinmodules, i.e.,
A.M.Min for every association A, are considered here. This
is because the set of modules that the corresponding artifacts
can at most trace to, i.e., A.M.Max , can become quite large
and this metric would lose meaning. Also, in practice, when-
ever there are Min traces available they are the preferable
ones, because they are the ones the artifacts most probably
trace to. Only when such traces are not available other trace
information like where artifacts cannot trace (A.M.Not) or
where they can at most trace (A.M.Max) become really use-
ful.

Given a number of features n in a domain, the highest
order derivative that can appear in that domain is n − 1.
However, except for the ModelAnalyzer case study none of
the highest order derivativemodules actuallywere associated
with any artifacts. This is because the number of available
input product variants for MA is very small and therefore the
extraction could not rule out the possibility of some of the
higher-order derivatives containing code. Considering that
it is increasingly unlikely for higher-order derivatives to be
associated with artifacts, a threshold for the maximum order
of derivatives could be used. This would reduce the number
of modules and hence also reduce the runtime, which, as
was shown in the previous subsection, is mostly spent on
processing modules.

This can also have an impact on the testing process of sets
of product variants. As most higher-order modules do not
contain implementation, they need not be covered by tests,
whichmeans fewer product variants need to be tested to cover
all the modules that actually contain code.

7.5.3 Number of artifacts

The number of artifacts in the database is a simple metric
that hints at the size of the database. Again eight runs were
performedwith a randomized order of input product variants.

123

1194 L. Linsbauer et al.

0 1 2 3 4 5 6 7 8 9 10 11 12
100

101

102

103

104

Order [#]

M
od

ul
es

[#
]

Draw VOD ArgoUML
ZipMe GOL MA

Fig. 17 Modules per order overview

0 20 40 60 80 100

100

101

102

103

104

105

Input Products [%]

A
rt
ifa

ct
s
[#

]

Draw VOD ArgoUML
ZipMe GOL MA

Fig. 18 Artifacts overview

Figure 18 shows the average number of artifacts after each
newly added product. In every case study, it takes only very
few input product variants (less than 5) to have almost all the
artifacts available. Adding further product variants improves
other metrics like the number of associations or the distin-
guishability (see the following metrics) but do not improve
much on the number of available artifacts.

Again this can have implications for testing. In order to
achieve high code coverage of test suits only few product
variants need to be tested.

0 20 40 60 80 100

100

101

Input Products [%]

A
ss
oc
ia
ti
on

s
[#

]

Draw VOD ArgoUML
ZipMe GOL MA

Fig. 19 Associations overview

7.5.4 Number of associations

The average number of associations after each newly added
product variant over eight runs with randomized order of
input product variants is shown in Fig. 19. Similarly as for the
number of artifacts also the number of associations increases
very quickly already with the first few input product variants,
although not with quite as few. However, it keeps increas-
ing steadily with more additional product variants before it
finally reaches its peak.

7.5.5 Distinguishability

Distinguishability describes the number ofmodules per asso-
ciation.

Definition 19 Distinguishability is the average cardinality
of all module sets whose respective associations contain at
least one artifact and at least one module.

Distinguishability = 1

n
∗

n∑

i=1

|associationi .M |

where n is the number of associations that contain at least one
artifact and at least one module and associationi is such an
association.

The purpose of this metric is to measure how many mod-
ules on average could not be separated because they never
appeared without each other in any of the input product
variants. The optimal value for this metric would be 1, mean-
ing every association containing at least one artifact would

123

Variability extraction and modeling for product variants 1195

Table 5 Distinguishability overview

Case study Lower bound Achieved

Draw 21 − 1 = 1 1.9

VOD 26 − 1 = 63 63.8

ArgoUML 23 − 1 = 7 7.2

ZipMe 22 − 1 = 3 3.9

GOL NA 21.0

MA NA 1917.2

have exactly one module. However, this can only very rarely
be achieved due to mandatory features that are present in
every product variant or features that can never appear with-
out each other, also known as atomic sets [8]. In Table 5,
the lower bound for the theoretically best achievable dis-
tinguishability (the number of inseparable modules formed
by the n mandatory features: = 2n − 1) and the actually
achieveddistinguishability is shown for every case studywith
two exceptions: GOL has a more complex feature model so
the optimal value is non-trivial to compute, and ModelAn-
alyzer for which we do not have a feature model available.
The distinguishabili t y improves with the number of input
product variants and is generally worse the more features
there are. Again this metric was computed for eight runs
with a random order of input product variants and then aver-
aged. As is shown in Fig. 20, the distinguishability first gets
worse quickly but then improves steadily with every addi-
tional input product variant. This is in contrast with our other
metrics. Only the ModelAnalyzer case study does not reach
the point where the distinguishability improves because of
the small number of available product variants. This means
that the average number of modules per association increases
with the first few input product variants added. After that crit-
ical number of product variants, however, modules become
increasingly separated with every additional input product,
and it becomes possible to determine more accurately which
modules really trace to certain implementation artifacts by
ruling out other modules that do not.

7.6 Discussion and summary

In summary our metrics show solid results. The dependency
graphs and the corresponding feature models do not contra-
dict each other. The extracted traces are consistent with the
variability inherent to the used input products. The runtime
for adding new products increases with the size of the data-
base. Most of the runtime is taken up by processing modules.
It makes sense to introduce a threshold for the maximum
order of derivatives that will be computed to decrease the
runtime, because most higher-order derivative modules do
not have any implementation artifacts. This would also have

0 20 40 60 80 100

0

2,000

4,000

6,000

Input Products [%]

D
is
ti
ng

ui
sh
ab

ili
ty

[#
]

Draw VOD ArgoUML
ZipMe GOL MA

Fig. 20 Distinguishability overview

a positive effect on distinguishability, as there will be fewer
modules per association. The number of artifacts in the data-
base as well as the number of extracted associations reach
a peak already with very few input products, which means
that the presented approach can already function well with
just few available input products. Only for achieving a near
optimal distinguishability, it is necessary to have a large set
of available products.

7.7 Threats to validity

The first threat is in the selection of case studies to represent
the problem domain. Our current selection only consists of
systems that are implemented in Java. As we use a generic
data structure very similar to ASTs to represent the imple-
mentation artifacts, and most programming language parsers
provide exactly such an AST, we do not expect the results to
differ much for other programming languages. Additionally,
we were successful in extending our approach to support
UML diagrams (in EMF Ecore format) and are currently
investigating its application to other types of artifacts like
Excel sheets or CAD (Computer-Aided Design) drawings.
Unfortunately, however, we could not get access to any real-
istic and publicly available case studies of any such kind that
could be used in our evaluation, butwe are constantly looking
for them.

Another threat is the selection of our extractionmetrics we
devised in our evaluation. Most of them are a direct result of
our algorithm and can be measured directly (e.g., by simple
counting), like the number of associations or the modules per
order. These metrics help us to discuss interesting patterns
the results, and their implications for our future research and

123

1196 L. Linsbauer et al.

the research domain in general, but they are not critical for the
validity of the evaluation of our approach. We simply report
on these metrics to give further insights into our approach
and a better understanding of the results.

8 Related work

Our previous work presented a framework and workflow that
combines extraction and composition support for clone-and-
own [15]. Also, we have applied our extraction work to a
mixed-variability system from industry [24]. In this type of
system, variability is realized in multiple artifact types and
with several variability techniques, for example at compile
time using custom configuration tools or preprocessors, or
during runtime via configuration files.

Rubin and Chechik present an algorithm for n-way merg-
ing of model variants which could be employed for combin-
ing the models of related projects into a product line [32].
Their operators compare and compose perform similar tasks
as our extraction and composition. However, their focus is
on merging variants rather than extracting traces from them
as we do. Nonetheless, we should point out that our traces
are in fact merged when creating (i.e., composing) products
as explained in our evaluation.

Koschke et al. aim to reconstruct the module view of
product variants and establish a mapping of code entities to
architecture entities, with the goal of consolidating software
product variants into software product lines by inferring the
software product line architecture [22]. For this they adapt
the reflexion method by applying it incrementally to a set of
variants taking advantage of commonalities in their code, for
which they use clone-detection and function similarity mea-
sures. In contrast to our work, they compute the mappings
entirely based on source code and do not consider features
(or feature interactions). Also, while we aim to keep our
approach generic and applicable to different types of arti-
facts, we believe that, for the case of source code, our work
could also benefit from clone-detection and function similar-
ity metrics.

Rubin et al. propose a framework for managing product
variants that are the result of clone-and-own practices [34].
They outline a series of operators and how they were applied
in three industrial case studies. These operators serve to pro-
vide a more formal footing to describe the set of processes
and activities that were carried out to manage the software
variants in the different scenarios encountered in the case
studies. We believe that our variability extraction techniques
can provide the functionality of some of these operators, and
we therefore plan to apply our techniques to such scenarios.

Xue et al. use diffing algorithms to identify the common
andvariable parts of product variants,which are subsequently
partitioned using Formal Concept Analysis [38]. To these

partitions, Information Retrieval algorithms are applied to
identify the code units specific to a feature. In contrast to
our work, they do not explicitly distinguish code of sin-
gle features from code of feature interactions. However, we
will explore how to leverage advanced diffing techniques
employed in this work for detecting a wider spectrum of
software artifact changes.

Rubin et al. survey feature location techniques for map-
ping features to their implementing software artifacts [33].
The extraction process in our work can also be categorized
as a feature location technique, only that we also consider
additional problems like feature interactions instead of just
single features and also the order of artifacts instead of just
their presence or absence. Another feature location survey
exists by Dit et al. [12]. However, the approaches they sur-
vey do not identify feature interactions and dependencies as
our work does.

Other traceability and information mining algorithms are
presented byAli et al. in [1] or by Kagdi et al. in [19] who use
information retrieval techniques in combination with infor-
mation mined from software repositories to locate features
in the source code.

Chen et al. [9] present a way of displaying traceability
links which could be used to visualize the traceability infor-
mation extracted by our approach.

Nguyen et al. present JSync [30], a tool for managing
clones in software systems. Techniques like these could be
useful for us when performing the extraction on legacy prod-
uct variants whose implementations have diverged signifi-
cantly over time and feature implementations have become
inconsistent across different product variants.

Laguna andCrespoperformeda systematicmapping study
on software product line evolution and made an assessment
of thematurity level of the techniques by evaluating how suit-
able they are for industrial application, that is, if they have
availablemethodology and tool support, and if theyhavebeen
applied to relevant case studies [23]. They found that even
though there is incipient work to address both challenges, the
current methodological and tooling support is rather frag-
mented. Their work does corroborate the crucial need to
develop an integrated framework, with robust methodologi-
cal underpinnings and with adequate tool support, for which
our work can be the foundation as variability information is
crucial during any form of software product line evolution.
Assuncao and Vergilio conducted another mapping study on
feature location for the migration of software product lines
[6]. The trace extraction we describe falls also under this
category.

Martinez et al. present a generic and extensible approach
for adopting software product lines from sets of product vari-
ants [29]. Similarly to our work, they also perform feature
location and constraints discovery; however, they only con-
sider single features and not feature interactions and instead

123

Variability extraction and modeling for product variants 1197

of our rules they use another heuristic which is also based on
commonalities and differences in product variants.

9 Conclusions

In this work, we presented an approach for extracting vari-
ability information from sets of product variants. We extract
traces from modules, a concept more flexible than simple
features or requirements, to their implementing artifacts. We
express traces in several degrees of certainty: where mod-
ules at least trace, where they can at most trace, and where
they certainly not trace. Finally, we also compute dependen-
cies between traces that can be used as a form of variability
model. The evaluation using six case studies of various sizes
and domains has shown promising results. From this infor-
mation, all the input variants were correctly recomposed, and
the dependencies between traces were consistent with the
respective feature models.

10 Future work

Our approach captures exactly the variability present in the
used input product variants. However, if the variants have
been maintained inconsistently (e.g., bug fixes applied to
only some of the variants) and therefore have diverged from
each other, also all the inconsistencies are captured. Thismay
have a negative impact when using the traces to generate new,
previously unknown, product variants that were not used as
input. This is a result of overfitting [35] the extracted infor-
mation to the input product variants. We plan on addressing
this issue with configuration options expressing the desired
degree of fitting of the extracted information to the used input
product variants.

Also, looking at the extracted traces for ModelAnalyzer
lead us to believe that often new features are the result of
renaming of implementation artifacts (e.g., class or method
names in the case of source code) or changing user interface
strings. Using clone-detection techniques to account for this
could enable our approach to extract more compact traces
(e.g., instead of a whole new class implementing a new fea-
ture, it could be an already-existing class just with names
changed).

We identified the computation and processing of modules
as the part that consumes most of the runtime. Improving the
performance of this aspect of our approach is a priority for
our future work.

Another interesting avenue for further research lies in the
exploration of the relation between code metrics expressing
howmodular a software system is, like for example cohesion
or coupling, and the metrics computed by our approach, like
the maximum order of modules or the distinguishability.

We are currently searching for more case studies, from
other domains, with larger number of features and artifacts,
ideally also containing other artifacts than source code such
as UML or SysML diagrams.

Acknowledgements Open access funding provided by [Austrian Sci-
ence Fund (FWF)]. This research was funded by the Austrian Science
Fund (FWF) projects P25289-N15, P25513-N15 and Lise Meitner Fel-
lowship M1421-N15.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Ali, N., Guéhéneuc, Y.G., Antoniol, G.: Trustrace: mining software
repositories to improve the accuracy of requirement traceability
links. IEEE Trans. Softw. Eng. 39(5), 725–741 (2013)

2. Apel, S., Atlee, J.M., Baresi, L., Zave, P.: Feature interactions:
the next generation (dagstuhl seminar 14281). Dagstuhl Rep. 4(7),
1–24 (2014). doi:10.4230/DagRep.4.7.1

3. Apel, S., Kästner, C.: An overview of feature-oriented software
development. J. Object Technol. 8(5), 49–84 (2009)

4. ArgoUML: Argouml-spl project. http://argouml-spl.tigris.org/
(2013). Accessed 2014

5. Assuncao, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio,
S.R., Egyed, A.: Extracting variability-safe feature models from
source code dependencies in system variants. In: Genetic and Evo-
lutionary Computation Conference (GECCO) (2015)

6. Assunção, W.K.G., Vergilio, S.R.: Feature location for software
product line migration: a mapping study. In: Gnesi, S., Fantechi,
A., ter Beek, M.H., Botterweck, G., Becker, M. (eds.) 18th Inter-
national Software Product LinesConference—CompanionVolume
for Workshop, Tools and Demo papers, SPLC ’14, Florence, Italy,
September 15–19, 2014, pp. 52–59. ACM (2014). doi:10.1145/
2647908.2655967

7. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise
refinement. IEEE Trans. Softw. Eng. 30(6), 355–371 (2004).
doi:10.1109/TSE.2004.23

8. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of
feature models 20 years later: a literature review. Inf. Syst. 35(6),
615–636 (2010)

9. Chen, X., Hosking, J.G., Grundy, J.: Visualizing traceability links
between source code and documentation. In: Erwig, M., Stapleton,
G., Costagliola, G. (eds.) VL/HCC, pp. 119–126. IEEE (2012)

10. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): Software
and Systems Traceability. Springer, Berlin (2012). doi:10.1007/
978-1-4471-2239-5

11. Couto, M.V., Valente, M.T., Figueiredo, E.: Extracting software
product lines: a case study using conditional compilation. In:
CSMR, pp. 191–200 (2011)

12. Dit, B., Revelle,M., Gethers, M., Poshyvanyk, D.: Feature location
in source code: a taxonomy and survey. J. Softw. Evol. Process
25(1), 53–95 (2013)

13. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M.,
Czarnecki, K.: An exploratory study of cloning in industrial soft-
ware product lines. In: Cleve, A., Ricca, F., Cerioli, M. (eds.) 17th
European Conference on Software Maintenance and Reengineer-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.4230/DagRep.4.7.1
http://argouml-spl.tigris.org/
http://dx.doi.org/10.1145/2647908.2655967
http://dx.doi.org/10.1145/2647908.2655967
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1007/978-1-4471-2239-5
http://dx.doi.org/10.1007/978-1-4471-2239-5

1198 L. Linsbauer et al.

ing, CSMR2013,Genova, Italy,March 5–8, 2013, pp. 25–34. IEEE
Computer Society (2013). doi:10.1109/CSMR.2013.13

14. Egyed, A.: Automatically detecting and tracking inconsistencies in
software design models. IEEE Trans. Softw. Eng. 37(2), 188–204
(2011)

15. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.:
Enhancing clone-and-own with systematic reuse for developing
software variants. In: 30th International Conference on Software
Maintenance and Evolution, pp. 391–400 (2014)

16. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A., Ram-
ler, R.: Bridging the gap between software variability and system
variant management: experiences from an industrial machinery
product line. In: Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (2015)

17. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extract-
ing feature models from sets of valid feature combinations. In:
Cortellessa, V., Varró, D. (eds.) FASE, Lecture Notes in Computer
Science, vol. 7793, pp. 53–67. Springer, New York (2013). doi:10.
1007/978-3-642-37057-1

18. Hetrick, W.A., Krueger, C.W., Moore, J.G.: Incremental return
on incremental investment: Engenio’s transition to software prod-
uct line practice. In: Tarr, P.L., Cook, W.R. (eds.) Companion to
the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2006, October 22–26, 2006, Portland, Oregon, USA, pp. 798–804.
ACM (2006). doi:10.1145/1176617.1176726

19. Kagdi, H.H., Gethers, M., Poshyvanyk, D.: Integrating concep-
tual and logical couplings for change impact analysis in software.
Empir. Softw. Eng. 18(5), 933–969 (2013)

20. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-
oriented domain analysis (foda) feasibility study. Tech. rep.,
Technical Report CMU/SEI-90TR-21, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, USA (1990)

21. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory,
D.S., Saake, G.: On the impact of the optional feature problem:
analysis and case studies. In: Muthig, D., McGregor, J.D. (eds.)
Software Product Lines, 13th International Conference, SPLC
2009, San Francisco, California, USA, August 24–28, 2009, Pro-
ceedings, ACM International Conference Proceeding Series, vol.
446, pp. 181–190. ACM (2009). doi:10.1145/1753235.1753261

22. Koschke, R., Frenzel, P., Breu, A.P.J., Angstmann, K.: Extending
the reflexion method for consolidating software variants into prod-
uct lines. Softw. Qual. J. 17(4), 331–366 (2009)

23. Laguna, M.A., Crespo, Y.: A systematic mapping study on soft-
ware product line evolution: from legacy system reengineering to
product line refactoring. Sci. Comput. Program. 78(8), 1010–1034
(2013). doi:10.1016/j.scico.2012.05.003

24. Linsbauer, L., Angerer, F., Gruenbacher, P., Lettner, D., Praehofer,
H., Lopez-Herrejon, R.E., Egyed, A.: Recovering feature-to-code
mappings in mixed-variability software systems. In: 30th Interna-
tional Conference on Software Maintenance and Evolution., pp.
426–430 (2014)

25. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Recovering trace-
ability between features and code in product variants. In: SPLC-7,
pp. 131–140 (2013)

26. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Feature model
synthesiswith genetic programming. In:Goues, C.L., Yoo, S. (eds.)
Search-Based Software Engineering—6th International Sympo-
sium, SSBSE 2014, Fortaleza, Brazil, August 26–29, 2014. Pro-
ceedings, Lecture Notes in Computer Science, vol. 8636, pp. 153–
167. Springer, Berlin (2014). doi:10.1007/978-3-319-09940-8_11

27. Liu, J., Batory, D., Lengauer, C.: Feature oriented refactoring of
legacy applications. In: ICSE-28, pp. 112–121. ACM (2006)

28. Lopez-Herrejon, R.E., Galindo, J.A., Benavides, D., Segura,
S., Egyed, A.: Reverse engineering feature models with evo-
lutionary algorithms: An exploratory study. In: Fraser, G., de

Souza, J.T. (eds.) SSBSE, Lecture Notes in Computer Science,
vol. 7515, pp. 168–182. Springer, Berlin (2012). doi:10.1007/
978-3-642-33119-0_13

29. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.:
Bottom-up adoption of software product lines: a generic and exten-
sible approach. In: Schmidt, D.C. (ed.) Proceedings of the 19th
International Conference on Software Product Line, SPLC 2015,
Nashville, TN, USA, July 20–24, 2015, pp. 101–110. ACM (2015).
doi:10.1145/2791060.2791086

30. Nguyen, H.A., Nguyen, T.T., Pham, N.H., Al-Kofahi, J.M.,
Nguyen, T.N.: Clone management for evolving software. IEEE
Trans. Softw. Eng. 38(5), 1008–1026 (2012)

31. Pohl, K., Böckle, G., Linden, FJvd: Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Secau-
cus (2005)

32. Rubin, J., Chechik, M.: N-way model merging. In: Meyer, B.,
Baresi, L., Mezini, M. (eds.) Joint Meeting of the European Soft-
ware EngineeringConference and theACMSIGSOFTSymposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18–26, 2013, pp. 301–311.
ACM (2013). doi:10.1145/2491411.2491446

33. Rubin, J., Chechik, M.: A survey of feature location techniques.
In: Domain Engineering: Product Lines, Conceptual Models, and
Languages, pp. 29–58. Springer, Berlin (2013)

34. Rubin, J., Czarnecki, K., Chechik, M.: Managing cloned variants:
a framework and experience. In: SPLC, pp. 101–110 (2013)

35. Russell, S.J., Norvig, P.: Artificial Intelligence: A Mod-
ern Approach (3. internat. ed.). Pearson Education (2010).
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn
-0136042597,00.html

36. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional (2009)

37. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability
realization techniques. Softw. Pract. Exp. 35(8), 705–754 (2005)

38. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of
product variants. In:WCRE, pp. 145–154. IEEEComputer Society
(2012)

39. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature iden-
tification from the source code of product variants. In: Mens,
T., Cleve, A., Ferenc, R. (eds.) 16th European Conference on
Software Maintenance and Reengineering, CSMR 2012, Szeged,
Hungary, March 27–30, 2012, pp. 417–422. IEEE (2012). doi:10.
1109/CSMR.2012.52

Lukas Linsbauer is currently a
Ph.D. student at the Institute for
Software SystemsEngineering at
the Johannes Kepler University
(JKU) in Linz, Austria, under
the supervision of Prof. Alexan-
der Egyed and Dr. Roberto Erick
Lopez-Herrejon. He received his
master’s degree in computer sci-
ence from the JKUafter only four
years of study for each of which
he received a merit scholarship.
His research interests are in soft-
ware product lines, variability
modeling and management, and

highly variable and configurable systems.

123

http://dx.doi.org/10.1109/CSMR.2013.13
http://dx.doi.org/10.1007/978-3-642-37057-1
http://dx.doi.org/10.1007/978-3-642-37057-1
http://dx.doi.org/10.1145/1176617.1176726
http://dx.doi.org/10.1145/1753235.1753261
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1007/978-3-319-09940-8_11
http://dx.doi.org/10.1007/978-3-642-33119-0_13
http://dx.doi.org/10.1007/978-3-642-33119-0_13
http://dx.doi.org/10.1145/2791060.2791086
http://dx.doi.org/10.1145/2491411.2491446
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://dx.doi.org/10.1109/CSMR.2012.52
http://dx.doi.org/10.1109/CSMR.2012.52

Variability extraction and modeling for product variants 1199

Roberto Erick Lopez-Herrejon
is currently a postdoctoral re
searcher at the Johannes Kepler
University in Linz Austria. He
has been a Lise Meitner Fellow
(2012–2014) sponsored by the
Austrian Science Fund (FWF),
an Intra-European Marie Curie
Fellow (2012–2014) sponsored
by the European Union, and
a Career Development Fellow
(2005–2008) at the Software
Engineering Centre of the Uni-
versity of Oxford, England. He
obtained his Ph.D. fromTheUni-

versity of Texas at Austin in 2006, funded in part by a Fulbright
Fellowship. His expertise is software product lines, variability man-
agement, feature oriented software development, and search-based
software engineering.

Alexander Egyed is Vice Rec-
tor for Research and Full Pro-
fessor at the Johannes Kepler
University (JKU) Linz, Austria.
He received his Doctorate degree
from the University of Southern
California, USA, then worked in
industry for seven years before
joining the University College
London, UK. Dr. Egyed’s work
has been published at over a
150 refereed scientific books,
journals, conferences, and work-
shops,with over 4300 citations to
date. He was recognized as a Top

1% scholar in software engineering and was named an IBM Research
Faculty Fellow. He received a Recognition of Service Award from the
ACM, Best Paper Awards fromECSA, COMPSAC andWICSA, and an
Outstanding Achievement Award from the USC. He is a senior member
of the IEEE and ACM.

123

	Variability extraction and modeling for product variants
	Abstract
	1 Introduction
	2 Background and running example
	2.1 Running example and basic definitions
	2.2 Variability modeling with feature models

	3 Motivating scenario
	4 Variability extraction data structures and operations
	4.1 Artifacts
	4.2 Artifact trees
	4.3 Operations on artifact trees
	4.4 Ordered nodes and sequence graphs

	5 Trace extraction
	6 Dependency extraction
	7 Evaluation
	7.1 Methodology
	7.2 Case studies
	7.2.1 Draw product line (DPL)
	7.2.2 Video on demand (VOD)
	7.2.3 ArgoUML
	7.2.4 ZipMe
	7.2.5 Game of life (GOL)
	7.2.6 ModelAnalyzer (MA)

	7.3 Dependency graphs validation
	7.4 Trace correctness validation
	7.5 Extraction metrics
	7.5.1 Runtime performance
	7.5.2 Modules per order
	7.5.3 Number of artifacts
	7.5.4 Number of associations
	7.5.5 Distinguishability

	7.6 Discussion and summary
	7.7 Threats to validity

	8 Related work
	9 Conclusions
	10 Future work
	Acknowledgements
	References

